Лузина Т.А.
Учитель математики СШ 83
...Природа не терпит пустоты, и если мозг человека
частично не занят, он все равно заполнится, но уже не
знаниями, а чепухой.
Дмитрии Лихачев
В последние годы много и часто говорят о
недостаточной эффективности процесса обучения в школе.
Главную причину видят в том, что его традиционная организация
не отвечает требованиям времени, не создает условий для
улучшения качества обучения и развития учащихся. С этим
трудно не согласиться. Решение этой проблемы, главным
образом, зависит от того, на получение какого именно результата
ориентируется учитель в своей работе. В этой связи главным
критерием деятельности учителя является представление
о конечном результате. Хотим ли мы дать ученику определенный
набор знаний по предмету или сформировать личность, готовую
к творческой деятельности. Главное найти тот рычаг, который
приведет в движение механизм развития творческой деятельности,
а вместе с тем и личности учащегося.
Исходя из общей цели, стоящего перед системой обучения,
направленной на общее развитие школьников, курс математики
нацелен на решение следующих задач:
1. способствовать продвижению школьников в общем развитии,
то есть развивать их мышление;
2. дать представление о математике как науке, обобщающей
реально существующие и происходящие явления и способствующей
познанию окружающей действительности;
3. сформировать знания, умения и навыки, необходимые ученику
в жизни.
При знакомстве с программой нужно иметь в виду, что ее
содержание не однородно и относится к трем разным уровням,
каждый из которых имеет свою специфику и требует различного
подхода.
Воспитать инициативного, думающего, ответственного человека
традиционными способами невозможно и программа РО - один
из путей достижения этой цели.
Проблема, которая особенно беспокоит педагогов, работающих
в подростковых классах -потеря познавательного интереса,
снижение внутренней мотивации учения.
В 1999 году мы уже делились с правильным подбором учебного
комплекта под редакцией Т.В. Дорофеева для 5-6 классов,
который стал продолжением математики под редакцией Аргинской,
выбранной в начальной школе. И продолжили обучение алгебре
в 7, 8, 9 классах по учебнику «Математика» - 7, 8, 9,
геометрию в 7-9 изучали по учебнику Атанасяна, который
взят из рекомендаций по использованию учебников федерального
комплекта в общеобразовательных учреждениях Пермской области
(изданное в 1997 году).
Прогресс науки и техники в нашей стране столь стремителен,
что за ним не может угнаться школьное образование, поэтому
приходится самим прикладывать к этому определенные усилия.
При использовании данных учебных комплектов заметен приоритет
развивающей функции над информационной.
При работе по выше перечисленным учебникам мы замечали,
что значительно шире содержание курса математики, алгебры,
геометрии, рассматривается широкий спектр вопросов, изучается
очень много дополнительных тем ДО математике, которые
ране не изучались в общеобразовательном курсе в обязательном
порядке, что значительно расширяет кругозор школьников.
Основным принципом, положенным в основу программы начальной
школы, является принцип преемственности между начальной
и средней школой, а именно: преподавание математики в
начальной школе должно основываться на фундаментальных
математических понятиях, а не сводиться к изучению арифметических
операций над натуральными числами и решению простейших
текстовых задач. Этот принцип является основой построения
единого курса математики 1 -9.
Одна из основных задач курса - обучение школьников построению,
исследованию и применению математических моделей окружающего
мира.
В дополнительные темы по математике в 5-6 классах входит
сбалансированное сочетание арифметического и геометрического
материала, что значительно развивает важные качества мышления,
а это является пропедевтикой изучения геометрии. Благодаря
этому учащиеся четко проводят логические рассуждения,
делают обоснованные выводы.
Через все классы с 1 по 9 проходит новая содержательная
линия, включающая решение комбинаторных задач, знакомство
с элементами описательной статистики и формирование начальных
вероятностных представлений, например:
1 класс
• изображение условий задач с помощью графических моделей
2 класс
• упорядоченный перебор вариантов
3 класс
• игры на передачу изображения
5 класс
• перебор возможных вариантов
• комбинаторные задачи
• дерево возможных вариантов
• случайные события
• возможно или невозможно
• достоверные, возможные и невозможные случайные события
• диаграммы и опрос общественного мнения
6 класс
• комбинаторика
• частота и вероятность
• для тех, кому интересно 7_класс
• описательная статистика
• перестановки
• графики вокруг нас
• для тех, кому интересно .8-класс
• статистические характеристики (элементы высшей математики)
• вероятность равновозможных событий (теория вероятности)
• геометрические вероятности 9 класс
• для тех, кому интересно
Углубленное развитие получает вероятностно-статистическая
линия курса, которая обладает огромным воспитательным
потенциалом. Изучение этого материала влияет на развитие
интеллектуальных способностей, усиливает прикладной аспект
математики, способствует развитию интереса к предмету.
Интеллектуальное развитие учащихся напрямую зависит от
степени сформированности образного мышления, поэтому значительное
место в курсе отводится развитию воображение, являющегося
необходимым звеном в переходе от практических действий
к мысленному плану.
Раньше в традиционных учебниках также использовались геометрические
темы, но не в гаком объеме, в основном это была планиметрия,
что потом затрудняло изучение геометрии га 3 ступени.
Сейчас курс стереометрии представлен в достаточном объеме,
например:
5 класс
· геометрические тела
· параллелепипед и пирамида
Линия дополнительных тем проходит через весь курс математики
2 ступени, например:
(Математика» для 7-9 классов под редакцией Дорофеева Г.В.
Каждая глава содержит дополнительный материал (рубрика
«Для тех, кому интересно»), позволяющий учащимся выйти
за круг обязательных вопросов, углубить знания, а также
включает вопросы для повторения и самопроверки.
Сохранение интереса к изучению математики при использовании
новых комплектов учебников обеспечивается не только через
дополнительные темы. но и через достаточное количество
занимательных задач.
Занимательные задачи — инструмент для развития мышления
ведущего к формированию творческой деятельности школьника.
К таким задачам относятся задачи «на соображение», <на
догадку», головоломки, нестандартные задачи, логические
задачи, творческие задачи. Например задача 5-го класса:
«Читая книги Жюль Верна, вы не раз встречались с единицами
длины, выраженными в милях. Вот выдержка из книги «Таинственный
остров»: «Расстояние между двумя крайними сочками, на
которые опиралась бухта, составляло около 8 миль. В полумиле
от берега был расположен островок, поперечник его в самом
широком месте не превышал четверти мили». Выразите данные
величины в метрах, если одна миля равна примерно 1852
метра.»
Или задача 7-го класса:
«( Старинная задача.) Некто сказал другу: «Дай сто рублей,
и я буду вдвое богаче тебя». Друг ответил: «Дай ты мне
только 10, и я стану в 6 раз богаче тебя.» Сколько денег
было у каждого?»
Занимательный материал многообразен, но его объединяет
следующее:
1. способ решения занимательных задач не известен;
2. занимательные задачи способствуют поддержанию интереса
к предмету.
Для решения занимательных задач характерен процесс поисковых
проб. Появление догадки свидетельствует о развитии у детей
таких качеств умственной деятельности как смекалка я сообразительность.
Смекалка - это особый вид проявления творчества. Она выражается
в результате анализа, сравнений, обобщений, установления
связей, аналогий, выводов, умозаключений.
Систематизированный набор нестандартных задач применяется
по индивидуальному плану учителя на уроках и во внеурочной
работе. Конкретно можно рассмотреть некоторые темы.
5 класс, тема «Перебор возможных вариантов», в которой
начинается изучение новой содержательной линии «Анализ
данных». Представлены характерные для комбинаторики задачи
на размещения, сочетания, перестановки, но сами термины
и формулы не рассматриваются. Предлагается более доступный
детям данного возраста метод решения - построение дерева.
К учебным комплектам есть задачник контрольных работ,
тестов, проверочных и самостоятельных работ. Но в этом
пособии не содержится проверочных работ по вероятностно-статистической
линии курса, так как этот материал не относится к обязательным.
Текущую проверку его усвоения предпочтительно вести бесед
и диалогов, в ходе устных ответов учащихся.
В педагогике в течение длительного времени не разрабатывались
в дидактическом плане проблемы соотношения обучения и
развития. Эффективность работы школы повысилась бы, если
раскрыть связь между построением обучения и продвижением
школьников в их общем развитии. Общее развитие - это развитие
ума, воли, чувств, качеств, которые помогают сориентироваться
в незнакомой ситуации.